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Abstract 

The commercialisation of pistachio nuts often faces issues of adulteration or misrepresentation 

concerning their cultivation practices and geographical origins. In this investigative study, we harnessed the 

capabilities of Hyperspectral Imaging (HSI) employing a SPECIM IQ camera to discern the irrigation 

treatments and geographical variations in pistachio nuts harvested from two distinct orchards in Spain, 

namely "La Seca" and "La Moraleja". Two experimental plots were designated as control and high irrigation 

within each orchard. Hyperspectral data, covering the spectral range of 400-1000 nm, were meticulously 

captured and analyzed to unravel the contrasts in water management practices and their implications on 

pistachios' commercial quality and yield. 

 

The ensuing image analysis encompassed a broad spectrum of parameters, including water supplied and 

yield, and assessing percentage distribution among split, non-split, and blank nuts. Additionally, the origin 

and commercial calibre were evaluated to gauge the commercial viability of the yield. Three different 

Machine Learning (ML) models were used: Partial Least Squares-Discriminant Analysis (PLS-DA), Support 

Vector Machine (SVM) and XGBoost, which robust models were conceived. The results show that pistachio 

origin and water treatment predictions showed high accuracy with F1 scores of 0.99 and 0.92, respectively, 

and a combined prediction achieving 0.97, indicating the significant impact of location and irrigation. In 

contrast, other predictions like yield were strong (R2 score of 0.88), but shell split and calibre predictions 

were less accurate, highlighting the potential of advanced modelling to enhance pistachio quality 

predictability. 

 

Our analysis accentuates the profound potential of HSI, especially when deployed with a SPECIM IQ 

camera, in delineating the irrigation treatment and tracing the geographical origin of pistachio nuts. This 

endeavour paves the way for ensuring authenticity and commercial quality in the pistachio trade. It augments 

our understanding of the interplay between irrigation practices and nut commercial quality, fostering a 

sustainable and informed agricultural paradigm. 
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1. Introduction 

Pistachio trees, originating from southern Central Asia, have spread globally, reaching regions such as 

modern-day Syria around 2000 years ago (Mir-Makhamad et al., 2022). Pistachio nuts are renowned for their 

unique flavour and are celebrated for their high protein, dietary fibre, and essential vitamins and minerals 

(Mandalari et al., 2021). As significant crops in global agriculture, pistachios are in high demand. In 2022, 

Iran led in harvested area with 497,484 hectares, followed by Turkey (408,709 hectares) and the United States 

(173,207 hectares) (FAO, 2024). However, production quantities were highest in the United States (400,070 

tons), with Turkey and Iran producing 241,669 tons and 239,289 tons, respectively. Despite market instability 

and import competition, Spain has seen increased interest in pistachio cultivation and rising consumption 

(CBI, 2020). The pistachio industry faces challenges such as adulteration, mislabelling, and the diverse 
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impacts of irrigation practices on yield and quality. These issues necessitate robust, non-invasive techniques 

to trace the geographical origin and determine irrigation treatments. Spectroscopy, which analyses material 

interactions with electromagnetic radiation, offers a solution by examining light spectra. This technique, used 

to evaluate fruit quality (Lin & Ying, 2009), leaf water content (Rodríguez-Pérez, 2017), and disease 

assessment (Vélez et al., 2024; Xie et al., 2017), has been applied in the agri-food sector. Hyperspectral 

Imaging (HSI), combining imaging systems and spectroscopic instruments to provide spatially resolved 

spectral data, has gained popularity in this field (Wu et al., 2022). 

 

Unlike traditional spectrometers, HSI captures spectral profiles across areas, offering comprehensive 

characterization of absorption and reflection bands linked to objects and their conditions (Khan et al., 2022). 

HSI has proven feasible for disease detection, classification, grading, and chemical attribute detection in 

various agricultural products (B. Wang et al., 2023). By capturing and analysing images across a broad 

spectrum of wavelengths, HSI systematically detects nuances in grains, fruits, vegetables, and meats (Zhu et 

al., 2020). Over the past two decades, HSI has shown promise in measuring quality and protecting 

horticultural and agricultural products, evolving from remote sensing, computer vision, and point 

spectroscopy to provide superior defect and contamination detection (Sethy et al., 2022). These spectral 

signatures are crucial for acquiring agricultural information and detecting quality attributes of products like 

pistachio nuts (C. Wang et al., 2021). The post-harvest phase, critical for biosecurity, diagnostics, and quality 

assessment, significantly impacts commercial value and consumer acceptance (Palumbo et al., 2022). HSI 

contains hundreds of spectral bands, unlike RGB images with three colour channels. Despite the complexity 

of analysing this data, its potential is undeniable, with new techniques continually evolving (L. Wang & 

Zhao, 2016). Machine Learning (ML) has enhanced HSI applications for non-destructive, real-time food 

quality and safety assessments, from sorting to sales (Kang et al., 2022). Integrating HSI with ML has 

revolutionized non-destructive testing in agriculture and food quality assessment. ML has enabled precise 

pistachio mass estimation (Saglam & Cetin, 2022), damage detection in mango using NIR hyperspectral 

images (Vélez Rivera et al., 2014), accurate prediction of apple quality parameters (Çetin et al., 2022), and 

mango ripeness estimation via field hyperspectral imaging and ML (Gutiérrez et al., 2019). These advances 

highlight the significant impact of HSI and ML in improving food quality, agri-food production, and safety 

inspection. 

 

This study explores HSI technology and ML's potential to differentiate between irrigation treatments and 

the geographical origins of pistachios from two Spanish orchards. Using Python, Scikit libraries, and ML 

models like PLS-DA, SVM, and XGBoost, the study hypothesizes that irrigation methods and locations 

significantly affect pistachio yield and commercial quality. HSI images were used to build models for 

classifying pistachios based on origin and irrigation treatments, enhancing their traceability and authenticity. 

2. Materials and Methods  

 

In 2022, a study was conducted in two pistachio orchards in Valladolid, Castilla y León, Spain. These 

orchards, named "Moraleja de las Panaderas" (M) and "La Seca" (S), hosted pistachio plants from the Pistacia 

vera cv. Kerman variety. These 7-year-old (Moraleja) and 15-year-old (La Seca) plants were grafted onto 

UCB rootstock, a P. atlantica × P. integerrima hybrid, and planted in a 7 × 6 m triangular pattern to maximise 

sunlight and resource use. The male cultivar used was cv. Peter. Standard agricultural practices, including 

agrochemical applications, were followed to ensure optimal yield. Two irrigation treatments were applied: a 

high irrigation treatment (H) delivering 50% more water than the control (C). In "La Seca", irrigation from 

January to October used a computer-controlled drip system, providing 2,750 m³ ha⁻¹ for the control (SC) and 

4,660 m³ ha⁻¹ for the high irrigation treatment (SH). In "Moraleja", irrigation from May to October provided 

844 m³ ha⁻¹ for the control (MC) and 1,161 m³ ha⁻¹ for the high treatment (MH). This systematic variation 

aimed to study the effects of different irrigation levels on pistachio growth and productivity. 

 

By October 2022, twenty trees (five per treatment and location) were harvested. Agronomic and 

commercial quality metrics were assessed, including yield (kg per tree) and nut size (number per ounce). In 

addition, percentages of open husk (Split), closed husk (Non-Split) and empty nuts (Blank) were determined 

from representative subsamples of twenty-five nuts per tree. 
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Hyperspectral imagery was captured using the SPECIM IQ camera, equipped with a VNIR CMOS sensor, 

offering a 400-1000 nm spectral range. The camera, controlled via Specim's software, stored data on SD 

cards and operated on a 5200 mAh Li-Ion battery. This setup facilitated capturing high-quality images under 

optimal conditions (temperatures between +5°C and +40°C, and up to 95% non-condensing humidity). The 

collected pistachios were obtained from three bunches per tree across different orientations and heights. Due 

to tree age differences, some height samples were unobtainable from the Moraleja site. After processing, 

peeling and drying, a total of 158 images (2,818 pistachio nuts) were captured.  

 

Python 3.9 was used for image processing and model creation alongside libraries like Pandas, Numpy, 

Scikit-learn, and Scikit-image. The reflectance of the images was corrected using white and dark references, 

and Scikit-image's Otsu's binarisation removed the background. The spectra were scatter-corrected using 

standard normal variate (SNV) before analysis. Hyperspectral data analysis involved extracting the mean 

spectra of each pistachio and using Machine Learning (ML) models to predict various parameters. The 

models employed were Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine 

(SVM), and Extreme Gradient Boosting (XGBoost), trained on an Intel i9 processor with 16 GB of RAM 

and an NVIDIA GeForce RTX 3070Ti GPU. Model evaluation used metrics like F1 scores, confusion 

matrices, R², Mean Absolute Error (MAE), and Mean Squared Error (MSE). The dataset was split into 

training (70%) and validation (30%) sets. Scikit-learn's RandomizedsearchCV optimized model parameters 

using 10-fold cross-validation to achieve high accuracy and low Root Mean Squared Error (RMSE). 

3. Results 

Origin 

The study found notable spectral differences between the two locations, particularly in the Near-Infrared 

(NIR) region around 970 nm, associated with water content (Büning-Pfaue, 2003). More pronounced 

differences were observed at wavelengths 675 nm (chlorophyll) and 450 nm (carotenoids) (Wellburn, 1994), 

especially in the "La Seca" location. The predictive models reflected these spectral variations, with all 

achieving F1 scores above 94%. The PLS and SVM models performed similarly overall (both with an F1 

score of 0.99). However, SVM excelled in predicting "La Seca" pistachios, while PLS was better for 

"Moraleja" pistachios (Table 1). 

 

Irrigation Treatment 

The study also identified spectral differences based on irrigation treatments, especially in the NIR region 

at 970 nm, linked to water content, and at 480 nm, related to carotenoids. These differences were more 

noticeable in the "La Seca" location. The predictions reflected these spectral variations with high F1 scores. 

XGBoost had the lowest performance (F1 score of 0.72), while PLS achieved the highest F1 score of 0.92 

(Table 1). 

 

Origin and Irrigation Treatment 

Combining origin and irrigation treatment for predictions provided better results than mixing different 

locations, which could lead to poorer outcomes. Table 1 shows significant differences across the entire 

wavelength range for the four origin and irrigation treatment combinations. This approach improved 

classification accuracy, obtaining higher F1 scores. SVM produced the highest F1 score of 0.97, while 

XGBoost had the lowest at 0.87 (Table 1). 
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Table 1. Prediction results of the pistachio origin and irrigation treatment models and their interaction 

classification. 

Origin 

PLS XGBoost SVM 

F1 = 0.99 F1 = 0.94 F1 = 0.99 

 
Predicted 

 
Predicted 

 
Predicted 

La Seca Moraleja La Seca Moraleja La Seca Moraleja 
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Irrigation treatment 

PLS XGBoost SVM 

F1 = 0.92 F1 = 0.72 F1 = 0.77 
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Predicted 
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Predicted 

Class 
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High Control High Control High Control 

R
ea

l 

H
ig

h
 

259 59 
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Origin and irrigation treatment 

PLS XGBoost SVM 

F1 = 0.95 F1 = 0.87 F1 = 0.97 

Class 

Predicted 
Class 

Predicted Class Predicted 

MH SH MC SC MH SH MC SC  MH SH MC SC 

R
ea

l 

MH 121 0 0 0 

R
ea

l 

MH 90 17 7 7 

R
ea

l 

MH 120 0 1 0 

SH 0 310 0 0 SH 1 296 9 4 SH 0 308 2 0 

MC 0 2 166 29 MC 1 9 161 26 MC 0 0 189 8 

SC 0 0 10 208 SC 2 5 23 188 SC 0 0 15 203 

MH, Moraleja High; SH, La Seca High; MC, Moraleja High; SC, La Seca control 

 

Yield and commercial quality traits predictions. 

In pistachio production, yield, split, non-split, blank, and calibre are critical quality factors. PLSR, 

XGBoost, and SVM regression models were tested to predict these parameters. Accurate yield prediction, 

crucial for economic planning, showed high R² scores of 0.89 for PLS, 0.88 for SVM, and 0.38 for XGBoost. 

For split pistachios, SVM performed best with an R² of 0.58, while PLS and XGBoost had R² values of 0.56 

and 0.37, respectively. Non-split predictions were lower, with PLS achieving the highest R² of 0.37. PLS 

excelled with an R² of 0.71 for blanks, compared to XGBoost’s 0.48. Lastly, SVM predicted calibre most 

accurately with an R² of 0.57 (Table 2). 
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Table 2. Prediction results of the regression models for pistachio yield, split, non-split, blank and calibre. 
Model 

Y
ie

ld
 R² MAE MSE 

C
al

ib
re

 R² MAE MSE 

PLS 0.89 0.72 0.81 0.54 0.71 0.75 

XGBOOST 0.38 1.84 4.57 0.45 0.90 1.21 

SVM 0.88 0.72 0.89 0.57 0.63 0.70 

Model 

S
p

li
t 

R² MAE MSE 

N
o

n
-

S
p

li
t 

R² MAE MSE 

B
la

n
k
 R² MAE MSE 

PLS 0.56 6.74 74.15 0.37 5.30 55.53 0.71 5.11 49.56 

XGBOOST 0.37 8.96 104.33 0.23 6.13 68.10 0.48 6.92 90.69 

SVM 0.58 6.28 70.98 0.27 4.97 64.26 0.67 4.94 57.23 

MAE, Mean Absolute Error; MSE, Mean Squared Error. 

4. Discussion 

 

This study investigates the use of non-invasive techniques, specifically HSI in the 400-1000 nm range, to 

predict the geographic origin of pistachios and evaluate the impact of different irrigation practices. The 

research also aims to predict key quality and yield metrics of pistachios. Models using Partial Least Squares 

(PLS), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost), performed excellently 

distinguishing pistachios from the La Seca and Moraleja locations, achieving F1 scores above 94%. PLS and 

SVM models achieved an F1 score of 0.99 for water content and colour pigments, demonstrating precise 

differentiation based on these spectral characteristics. In predicting geographic origin, the models were 

inspired by previous research using deep learning techniques, which have also achieved high accuracy in 

classifying pistachio types (Singh et al., 2022). For instance, the EfficientNet-B3 model successfully 

identified Iranian pistachio cultivars with an average precision, recall, and F1 score of around 96.7% 

(Soleimnipour et al., 2022). This demonstrates the strong capability of machine learning models to ensure 

the traceability and authenticity of agricultural products. 

 

The study also explored the effects of irrigation treatment on pistachio spectral signatures, revealing 

significant differences, particularly at the 970 nm peak in the Near-Infrared (NIR) region, which is linked to 

water content (Büning-Pfaue, 2003). The best F1 score for distinguishing between different irrigation 

treatments was 0.92 with the PLS model. Differences at the 675 nm and 450 nm bands associated with 

chlorophyll and carotenoids were also noted (Walsh et al., 2020; Wellburn, 1994). Combining geographic 

origin and irrigation treatment variables improved classification performance, achieving higher F1 scores. 

The SVM model reached an F1 score of 0.97, demonstrating its effectiveness in this combined approach. 

Similar results were found in predicting the origin of Zanthoxylum bungeanum Maxim with a 97% accuracy 

(Ke et al., 2020) or in Jatropha curcas L. seeds (Gao et al., 2013) with a 94% correct classification. This 

highlights the subtle impact of both geographical origin and irrigation practices on the spectral signatures of 

pistachios. 

 

Regression models developed in the study showed high R² scores for predicting yield and commercial 

quality factors. The yield prediction achieved an R² of 0.88 with the SVM model, while the prediction of 

blank quality reached an R² of 0.71 with the PLS model. As previous research (Caporaso et al., 2018; Elmasry 

et al., 2012; Torres-Rodríguez et al., 2022; B. Wang et al., 2023), these models effectively forecast essential 

agricultural metrics, offering valuable tools for optimizing pistachio production. However, modelling the 

split and non-split conditions of pistachios proved challenging, with lower R² scores highlighting the 

difficulties in using spectral data for these specific quality attributes. 

 

The study underscores the potential of combining HSI with machine learning in agricultural science, 

particularly for identifying the unique characteristics of pistachios based on their geographic origin, irrigation 

methods, and quality markers. Despite challenges in classifying certain features accurately, the findings lay 

a foundation for future research into the spectral analysis of various pistachio varieties. Integrating these 

insights with precision agriculture technologies could significantly improve agricultural productivity and 

management. Advancements in HSI technology, such as its application through drone technology, offer 

promising avenues for optimizing water usage, enhancing crop quality, and promoting sustainable 

management practices in pistachio orchards. These developments could lead to more efficient and sustainable 
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pistachio production, benefiting increased efficiency, improved productivity, and reduced environmental 

impact. 
 

5. Conclusions 

 

This study demonstrates the effectiveness of Hyperspectral Imaging (HSI) and Machine Learning (ML) 

in accurately identifying the geographic origin of pistachios and assessing the impact of irrigation practices 

on their spectral properties. By using advanced models like Partial Least Squares (PLS), Support Vector 

Machine (SVM), and Extreme Gradient Boosting (XGBoost), high F1 scores above 94% were achieved, 

particularly in distinguishing pistachios from La Seca and Moraleja. PLS and SVM models excelled with F1 

scores of 0.99 in evaluating water content and colour pigments, underscoring HSI's potential in precision 

agriculture. The study also highlighted distinct spectral signatures from different irrigation treatments, 

especially the NIR region's notable peak at 970 nm. The PLS model stood out with an F1 score of 0.92, 

illustrating HSI's role in improving sustainable agricultural resource management. Regression models 

showed promising results, with an R² score of 0.88 for yield predictions using SVM and 0.71 for blank 

predictions with PLS. Despite challenges in predicting shell split and calibre, the study confirms HSI as a 

precise tool for identifying pistachio characteristics and forecasting commercial quality and yield, marking a 

significant advancement in optimizing pistachio production. 
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